Skip to main content

Groq Models Performance Comparison

Comprehensive benchmark analysis of 10 Groq models tested with production RahvaRaamat AI system prompt.

Test Date: November 16, 2025
Models Tested: 10 (100% completion rate)
Test Types: Estonian & English queries (Simple & Complex)

Current Production Model

** We are currently using: Llama 4 Scout 17B 16e-Instruct**

Model ID: meta-llama/llama-4-scout-17b-16e-instruct

  • Performance: 991ms avg latency, 1,346 t/s
  • Quality: 3/3 (Estonian , English , Format )
  • Consistency: 260ms variance (most consistent)
  • Best choice for Estonian production

Top Recommendations

CategoryModelLatencySpeedQualityBest For
FASTESTAllam 2 7B717ms2,315 t/s⚠️ NOT RECOMMENDED - Estonian issues
BEST QUALITYLlama 3.1 8B Instant923ms1,556 t/s⚠️ NOT RECOMMENDED - Malformed JSON
RECOMMENDEDLlama 4 Scout 17B991ms1,346 t/s3/3General-purpose AI assistant
HIGH QUALITYLlama 3.3 70B Versatile1,782ms823 t/s3/3Complex reasoning, detailed responses

Complete Model Rankings

Speed Rankings (by Average Latency)

RankModelParamsOwnerAvg LatencyMinMaxSpeed (t/s)
1Allam 2 7B7BSDAIA717ms529ms1,004ms2,315
2Llama 3.1 8B Instant8BMeta923ms598ms1,348ms1,556
3Llama 4 Scout 17B17BMeta991ms882ms1,142ms1,346
4GPT-OSS 20B20BOpenAI1,757ms860ms2,234ms1,233
5Llama 3.3 70B Versatile70BMeta1,782ms1,296ms2,306ms823
6Kimi K2 InstructN/AMoonshot AI1,843ms1,150ms2,379ms768
7Kimi K2 Instruct 0905N/AMoonshot AI1,930ms1,360ms2,817ms752
8GPT-OSS 120B120BOpenAI2,078ms1,665ms2,349ms931
9Llama 4 Maverick 17B17BMeta2,295ms1,719ms3,536ms595
10Qwen3 32B32BAlibaba2,849ms1,642ms3,873ms731

Quality Rankings

Quality Criteria:

  • Estonian coherence with special characters (õ, ä, ö, ü)
  • English coherence with relevant vocabulary
  • Follows format (numbered list with bold titles)
ModelQuality ScoreEstonianEnglishFormatAvg LengthStatus
Llama 3.1 8B Instant⚠️2,174 charsMalformed JSON
Llama 3.3 70B Versatile3/32,455 charsRecommended
Llama 4 Scout 17B3/32,510 charsPRIMARY
Llama 4 Maverick 17B3/32,628 charsGood
GPT-OSS 20B3/32,958 charsGood
GPT-OSS 120B3/33,191 charsGood
Kimi K2 Instruct3/32,635 charsGood
Kimi K2 Instruct 09053/32,926 charsGood
Qwen3 32B3/32,736 charsGood
Allam 2 7B1,960 charsEstonian issues

Language-Specific Performance

Estonian Queries

Simple: "Soovita mulle head krimiromaani"
Complex: "Otsin kingitust 45-aastasele naisele, kes armastab põnevust ja itaalia kultuuri. Eelarve kuni 30 eurot."

ModelSimpleComplexAvgNotes
Allam 2 7B737ms1,004ms871msEstonian issues
Llama 4 Scout 17B933ms1,142ms1,038msRECOMMENDED
Llama 3.1 8B Instant1,348ms1,047ms1,198msMalformed JSON
Llama 3.3 70B Versatile1,895ms2,306ms2,101msDetailed
Llama 4 Maverick 17B1,984ms1,939ms1,962msQuality focus

English Queries

Simple: "Recommend me a good crime novel"
Complex: "Looking for a gift for a 45-year-old woman who loves thrillers and Italian culture. Budget up to 30 euros."

ModelSimpleComplexAvgNotes
Allam 2 7B598ms529ms564msEstonian issues
Llama 3.1 8B Instant697ms598ms648msMalformed JSON
Llama 4 Scout 17B882ms1,007ms945msRECOMMENDED
GPT-OSS 20B860ms1,807ms1,334msVariable speed
Llama 3.3 70B Versatile1,630ms1,296ms1,463msDetailed

Observation: All models perform 30-40% faster on English queries than Estonian queries.

Performance Categories

FAST Models (<1s)

Best for: Real-time applications, chat interfaces, instant recommendations

⚠️ Note: Top 2 fastest models have critical issues. Use Llama 4 Scout 17B instead.

BALANCED Models (1-2s)

Best for: General-purpose AI, complex reasoning, versatile applications

Category Average: 1,979ms latency, 874 t/s

SLOW Models (>2s)

Best for: Long-form content, offline processing

Variability Analysis

Most Consistent:

  1. Llama 4 Scout 17B: 260ms variance
  2. Allam 2 7B: 475ms variance
  3. Llama 3.1 8B: 750ms variance

Most Variable:

  1. Qwen3 32B: 2,231ms variance
  2. Llama 4 Maverick: 1,817ms variance
  3. GPT-OSS 20B: 1,374ms variance

Production Recommendations

Use Case Matrix

Use CaseRecommended ModelModel IDReason
Customer-Facing ChatLlama 4 Scout 17Bmeta-llama/llama-4-scout-17b-16e-instructBest for Estonian production
Real-Time AssistantLlama 4 Scout 17Bmeta-llama/llama-4-scout-17b-16e-instructFast (991ms) with excellent quality
High-Volume ProcessingLlama 4 Scout 17Bmeta-llama/llama-4-scout-17b-16e-instructReliable and consistent
Complex ReasoningLlama 3.3 70Bllama-3.3-70b-versatile70B parameters for detailed analysis
Premium QualityGPT-OSS 120Bopenai/gpt-oss-120bLongest responses (3,191 chars)
Any Use CaseAllam 2 7Ballam-2-7bEstonian language issues
Any Use CaseLlama 3.1 8Bllama-3.1-8b-instantMalformed JSON issues

Implementation Strategies

Model: llama-4-scout-17b-16e-instruct
Performance: 991ms avg, 1,346 t/s, 3/3 quality, 260ms variance
Why: Best for Estonian production - reliable, fast, excellent quality

Option 2: Dual Model (Performance + Quality)

Fast Path: llama-4-scout-17b-16e-instruct (991ms, 3/3)
Quality Path: llama-3.3-70b-versatile (1,782ms, 3/3)
Logic: Use Scout for simple queries, switch to 70B for complex reasoning

Option 3: Dual Model with Fallback

Primary: llama-4-scout-17b-16e-instruct (991ms, consistent)
Fallback: llama-3.3-70b-versatile (1,782ms, complex queries)
Logic: Use Scout for all queries, switch to 70B only for complex reasoning

Models to Avoid

Allam 2 7B

Problems:

  • Poor Estonian language understanding
  • Fails to handle Estonian special characters properly (õ, ä, ö, ü)
  • Format inconsistency issues
  • Not suitable for Estonian production use

Verdict: DO NOT USE despite being fastest (717ms)

Llama 3.1 8B Instant

Problems:

  • Produces malformed JSON outputs
  • JSON parsing failures in context extraction
  • Unreliable structured data extraction
  • Breaks pipeline integration

Verdict: DO NOT USE despite good speed (923ms)

⚠️ Performance Issues

  • Qwen3 32B: Slow for Estonian (3,699ms - 3,873ms)
  • Llama 4 Maverick: High variability, can spike to 3,536ms

Cost-Performance Analysis

Efficiency Score (Tokens per Millisecond)

Modelt/msSpeed CategoryRecommendation
Allam 2 7B3.23Ultra-fastEstonian issues
Llama 3.1 8B1.69FastMalformed JSON
Llama 4 Scout1.36FastBest choice
GPT-OSS 20B0.70MediumGood for detailed work
Llama 3.3 70B0.46MediumPremium option
GPT-OSS 120B0.45MediumQuality focus

Final Verdict

Primary Recommendation: Llama 4 Scout 17B

Model ID: meta-llama/llama-4-scout-17b-16e-instruct
Performance:

  • Avg Latency: 991ms
  • Speed: 1,346 t/s
  • Quality: 3/3
  • Variance: 260ms (most consistent)
  • Best choice for Estonian production

Why Chosen:

  • Excellent Estonian language understanding
  • Reliable JSON output
  • Fast response times (<1s)
  • Consistent performance
  • 17B parameters for good reasoning

Alternative (Premium Quality): Llama 3.3 70B Versatile

Model ID: meta-llama/llama-4-scout-17b-16e-instruct
Performance:

  • Avg Latency: 991ms
  • Speed: 1,346 t/s
  • Quality: 3/3
  • Most consistent performance (260ms variance)

Model ID: llama-3.3-70b-versatile
Performance:

  • Avg Latency: 1,782ms
  • Speed: 823 t/s
  • Quality: 3/3
  • Best for complex queries requiring detailed analysis

Why Alternative:

  • Excellent Estonian support
  • Reliable JSON output
  • Best for complex reasoning
  • ⚠️ Slower (1.8s vs 1s)
  • ⚠️ Higher cost (70B vs 17B)

Performance by Language

Estonian Performance

Insight: Estonian queries average 30-40% slower than English across all models.

Summary Statistics

  • 10/10 models tested (100% completion rate)
  • 2 models rejected (Estonian issues, malformed JSON)
  • 8 viable models for production use
  • Current choice: Llama 4 Scout 17B (991ms, 3/3 quality, reliable)
  • Usable speed range: 991ms to 2,849ms (among viable models)
  • Usable throughput: 595 to 1,346 t/s (among viable models)

Next Steps

1. Production Deployment

Recommended Setup:

  • Primary: Llama 4 Scout 17B
  • Fallback: Llama 3.3 70B (for complex queries)
  • Emergency: GPT-5.1 (if Groq unavailable)

2. Production Monitoring

  • Track latency in real usage
  • Monitor Estonian language quality
  • Watch for JSON parsing errors
  • Analyze cost per request

3. Quality Assurance

Critical Checks:

  • Validate JSON structure from context extraction
  • Test Estonian special characters in responses
  • Verify numbered list formatting
  • Monitor error rates by model